Effect of phenol on the biological treatment of wastewaters from a resin producing industry.

نویسندگان

  • M Eiroa
  • A Vilar
  • C Kennes
  • M C Veiga
چکیده

The effect of phenol on the biological treatment of wastewaters from a resin producing industry was analyzed in a pre-denitrification system. First, the effect of phenol overloads on the removal of organic matter and nitrogen compounds was studied. During the overloads (from 250 to 4000 mg/L), phenol was detected in the effluent of the anoxic reactor but the system recovered fast after stopping the overloads. The total organic carbon (TOC) removal remained unchanged during phenol addition (91.9% at 0.20 kg TOC/m3 d), except for the highest overload. With regard to total Kjeldahl nitrogen (TKN), its mean removal (87.9% at 0.08 kg TKN/m3 d) was not affected by the phenol overloads. Afterwards, the effect of different phenol concentrations on the biological treatment of these wastewaters was analyzed. Phenol concentrations from 250 to 4000 mg/L were added to the feed. Phenol was completely removed despite the presence of other carbon sources in the wastewater. In spite of the presence of phenol, a TOC removal around 91.3% was achieved at an average organic loading rate of 0.11 kg TOC/m3 d. The mean applied nitrogen loading rates were 0.05 and 0.08 kg TKN/m3 d, obtaining TKN removals around 85.8% and 87.1%, respectively. Therefore, the biological treatment of wastewaters from a resin producing industry in a pre-denitrification system was not affected by the presence of phenol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of Phenolic Wastewaters by a Domestic Low-Pressure Reverse Osmosis System

In this paper, the removal of phenol by using aqueous solution in a low pressure reverse osmosis membrane was investigated. The effect of feed pressure, feed concentration, feed flow rate and feed pH on phenol rejection was investigated. The results showed that feed pH is the most affective parameter on the phenol rejection. Rejection of phenol increased with increasing pH from 2 to 10 under th...

متن کامل

Advanced Treatment of Meat Processing Wastewaters Using Microalgae

Introduction: Effluents of Meat processing are one of the untreated wastewaters containing high volumes of polluted components even after the primary and secondary treatments. The high cost of using the advanced treatment methods of the wastewaters has led the industry owners to release them in the nature without effective removal of nitrogen and phosphorus. In this study, an economic advanced ...

متن کامل

Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF) System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF) system in elimination of phenolic compounds from water. Methods: D. magna cult...

متن کامل

کارایی نانولوله‌های کربنی چندجداره در حذف فنل از محلول‌های آبی

Background and Objective: Various industries such as petrochemical, oil refinery, pharmaceutical, plastics, paper, steel and, resin produce a substantial of phenol and its derivatives. Wastewaters containing phenol need careful treatment before discharging into the environment due to their poor biodegradability and high toxicity. The objective of this study was to remove phenol by multiwall car...

متن کامل

تعیین کارایی فرایند ازناسیون کاتالیزوری / راکتور بیولوژیکی SBR در کاهش سمیت، معدنی‌سازی و تصفیه‌پذیری پساب حاوی فنل

Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 99 9  شماره 

صفحات  -

تاریخ انتشار 2008